RPI-BLENDER TAC-KBP2013 Knowledge Base Population System

نویسندگان

  • Dian Yu
  • Haibo Li
  • Taylor Cassidy
  • Qi Li
  • Hongzhao Huang
  • Zheng Chen
  • Heng Ji
  • Yongzhong Zhang
  • Dan Roth
چکیده

This year the RPI-BLENDER team participated in the following four tasks: English Entity Linking, Regular Slot Filling, Temporal Slot Filling and Slot Filling Validation. The major improvement was made for Regular Slot Filling and Slot Filling validation. We developed a fresh system for both tasks. Our approach embraces detailed linguistic analysis and knowledge discovery, and advanced knowledge graph construction and truth-finding algorithms.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

FRDC's Cross-lingual Entity Linking System at TAC 2013

In this paper, we present FRDC's system at participating in the cross-lingual entity linking (CLEL) tasks for the NIST Text Analysis Conference (TAC) Knowledge Base Population (KBP2013) track. We propose a joint approach for mention expansion, disambiguation, and clustering. In particular, we adopt a lexicon and rule based method for entity classification, a collaborative acronym expansion meth...

متن کامل

CUNY-BLENDER TAC-KBP2010 Entity Linking and Slot Filling System Description

The CUNY-BLENDER team participated in the following tasks in TAC-KBP2010: Regular Entity Linking, Regular Slot Filling and Surprise Slot Filling task (per:disease slot). In the TAC-KBP program, the entity linking task is considered as independent from or a pre-processing step of the slot filling task. Previous efforts on this task mainly focus on utilizing the entity surface information and the...

متن کامل

UCD IIRG at TAC 2010 KBP Slot Filling Task

This paper describes the IIRG’s first implementation of a system for automatic Knowledge Base Population (KBP). The Text Analysis Conference (TAC), first organised by NIST in 2008, promotes further research in Natural Language Technologies. In 2009, NIST added a Knowledge Base Population Track to TAC, the goal of this track was to promote research in to the automatic population of knowledge bases.

متن کامل

RPI BLENDER TAC-KBP2016 System Description

We used Stanford Corenlp toolkit (Manning et al., 2014b) for English name tagging. To extract name mentions from Chinese and Spanish documents, we use bi-directional LSTMs (Long Short Term Memory) networks which can leverage long distance features. The input of the networks are pretrained word embeddings and randomly generalized character embeddings. Both word embedding and character embeddings...

متن کامل

RPI BLENDER TAC-KBP2015 System Description

To extract English name mentions, we apply a linear-chain CRFs model trained from ACE 20032005 corpora (Li et al., 2012a). For Chinese and Spanish, we use Stanford name tagger (Finkel et al., 2005). We also encode several regular expression based rules to extract poster name mentions in discussion forum posts. In this year’s task, person nominal mentions extraction is added. There are two major...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013